Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study
نویسندگان
چکیده
BACKGROUND Aminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2″-phosphotransferase IVa, APH(2″)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step. METHODS We used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements. RESULTS For the first time, Kd values were determined directly for APH(2″)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction. CONCLUSIONS APH(2″)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2' and 6', but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3')-IIIa, an intermediate containing product is preponderant during the steady state. GENERAL SIGNIFICANCE This intermediate may constitute a good target for future drug design.
منابع مشابه
ATP binding enables broad antibiotic selectivity of aminoglycoside phosphotransferase(3')-IIIa: an elastic network analysis.
The bacterial enzyme aminoglycoside phosphotransferase(3')-IIIa (APH) confers resistance against a wide range of aminoglycoside antibiotics. In this study, we use the Gaussian network model to investigate how the binding of nucleotides and antibiotics influences the dynamics and thereby the ligand binding properties of APH. Interestingly, in NMR experiments, the dynamics differ significantly in...
متن کاملPurification and characterization of aminoglycoside 3'-phosphotransferase type IIa and kinetic comparison with a new mutant enzyme.
Aminoglycoside 3'-phosphotransferase [APH(3')s] provide an important means for high-level resistance to neomycin- and kanamycin-type aminoglycoside antibiotics. A four-step purification which affords milligram quantities of homogeneous APH(3') type IIa [APH(3')-IIa] is described. The kinetic parameters for the turnover of five substrates by the enzyme were determined, and the pH dependence and ...
متن کاملStructure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila.
Aminoglycoside phosphotransferases (APHs) constitute a diverse group of enzymes that are often the underlying cause of aminoglycoside resistance in the clinical setting. Several APHs have been extensively characterized, including the elucidation of the three-dimensional structure of two APH(3') isozymes and an APH(2'') enzyme. Although many APHs are plasmid-encoded and are capable of inactivati...
متن کاملNovel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Aminoglycoside 2″-phosphotransferases are the major aminoglycoside-modifying enzymes in clinical isolates of enterococci and staphylococci. We describe a novel aminoglycoside 2″-phosphotransferase from the Gram-negative pathogen Campylobacter jejuni, which shares 78% amino acid sequence identity with the APH(2″)-Ia domain of the bifunctional aminoglycoside-modifying enzyme aminoglycoside (6') a...
متن کاملThe molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2". The role of ASP-99 as an active site base important for acetyl transfer.
The most frequent determinant of aminoglycoside antibiotic resistance in Gram-positive bacterial pathogens is a bifunctional enzyme, aminoglycoside acetyltransferase-6'-aminoglycoside phosphotransferase-2" (AAC(6')- aminoglycoside phosphotransferase-2", capable of modifying a wide selection of clinically relevant antibiotics through its acetyltransferase and kinase activities. The aminoglycosid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1860 شماره
صفحات -
تاریخ انتشار 2016